
THE JOURNAL OF CHEMICAL PHYSICS 123, 114705 �2005�
Structures and adsorption of binary hard-core Yukawa mixtures
in a slitlike pore: Grand canonical Monte Carlo simulation
and density-functional study
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The grand canonical ensemble Monte Carlo simulation and density-functional theory are applied to
calculate the structures, local mole fractions, and adsorption isotherms of binary hard-core Yukawa
mixtures in a slitlike pore as well as the radial distribution functions of bulk mixtures. The excess
Helmholtz energy functional is a combination of the modified fundamental measure theory of Yu
and Wu �J. Chem. Phys. 117, 10156 �2002�� for the hard-core contribution and a corrected
mean-field theory for the attractive contribution. A comparison of the theoretical results with the
results from the Monte Carlo simulations shows that the corrected theory improves the density
profiles of binary hard-core Yukawa mixtures in the vicinity of contact over the original mean-field
theory. Both the present corrected theory and the simulations suggest that depletion and desorption
occur at low temperature, and the local segregation can be observed in most cases. For binary
mixtures in the hard slitlike pore, the present corrected theory predicts more accurate surface
excesses than the original one does, while in the case of the attractive pore, no improvement is found
in the prediction of a surface excess of the smaller molecule. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2013247�
I. INTRODUCTION

Recently, a close-packed monodisperse silica or latex
nanoparticle has been proposed for application in micropho-
tonic crystal devices and chips.1 Understanding the funda-
mental mechanisms that drive the assembly of particles at
microscopic level will bring about new strategies for the fab-
rication of well-ordered arrays of nanoscale objects. On the
other hand, the structure of colloids in confining geometry is
closely related to this self-assembly of colloidal particles for
material applications. Since the interaction between colloidal
particles is well described by a hard-core Yukawa �HCY�
potential,2,3 an investigation on the static density distribution
of the HCY fluids provides a useful starting point for under-
standing the self-assembly of colloidal particles and the mi-
croscopic flow behavior.

A lot of researches have been carried out to investigate
the pair-correlation functions, phase equilibria, thermody-
namic properties, and surface tensions of the pure HCY flu-
ids using integral equation theory, perturbation theory, and
Monte Carlo simulations,4–12 while few works have been
done on the HCY fluid mixtures.13,14 As for the inhomoge-
neous HCY fluids, all the studies are limited to the pure
attractive and repulsive HCY fluids. For example, Olivares-
Rivas et al.15 used the singlet hypernetted-chain integral
equation and a modified version of the Lovett-Mou-Buff-
Wertheim equation to predict the density profiles near a hard
wall at reduced density �b�3=0.7. Several versions16–19 of
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density-functional theory �DFT� are also developed for the
pure HCY fluid confined in a pore or near a wall. Among
these versions of DFT, our method19 and the one proposed by
Tang,18 both of which are based on the modified fundamental
measure theory �MFMT�20–22 for the hard-core contribution
and Rosenfeld’s perturbative expansion,19,23–27 are the most
promising theories for inhomogeneous HCY fluids. How-
ever, no investigation on confined HCY fluid mixtures is
reported up to now.

In our previous work,20,28 we applied the grand canoni-
cal ensemble Monte Carlo �MC� simulation and the DFT to
the investigation of the structures of attractive and repulsive
HCY fluids near a wall as well as the radial distribution
functions of the bulk HCY fluids. An excellent agreement
between theory and simulation is obtained. In this work, we
continue our investigation on the inhomogeneous HCY fluids
and focus on the binary systems using the MC simulation
and the DFT. The key problem of the DFT is that we have to
find a good approximation of the excess Helmholtz energy
functional. The DFT has enjoyed some remarkable successes
for hard-sphere fluids.21 In particular, the MFMT yields very
accurate density profiles for inhomogeneous hard-sphere
fluids23 and is easily applied to multicomponent and polydis-
perse hard-sphere fluids.27,29,30 In contrast, the DFTs for the
dispersion force are only satisfactory in the case of one-
component system. Since there is no analytical expression of
the direct correlation functions for the HCY fluid mixture, it
is difficult to use Rosenfeld’s perturbative method31 to con-
struct the excess Helmholtz energy functional of binary HCY

fluid mixtures. An alternative way is to use the popular
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mean-field �MF� theory,18,19 which is simple, computation-
ally efficient, and can be directly applied to multicomponent
systems. The shortcomings of the MF theory are apparent. It
neglects the fluid structure completely, and its performance is
highly system dependent.32,33 It usually overestimates the
density at a hard surface and gives too strong oscillations of
density profiles.34,35 It is reduced to the well-known van der
Waals equation of state at the homogeneous limit. Some
modifications36 have been made to improve the MF theory,
but they are semiempirical and do not solve the fundamental
problems in the MF theory. A recent modification19 of the
MF theory adopts the so-called effective reference field and
successfully addresses the interfacial and hydrophobic phe-
nomena in inhomogeneous fluids.20,21 In this work, the
Helmholtz energy functional of the HCY fluid mixtures are
constructed by combining the MFMT for the hard-core inter-
action with the MF theory for the Yukawa dispersion inter-
action. To cover the shortage of the MF theory, we introduce
a constant c to “correct” the MF theory just as we make a
correction of energy parameter a in the van der Waals equa-
tion of state. The constant c is determined from the bulk
chemical potential of pure HCY fluids. Then the theory is
applied to investigating the density profiles and surface ex-
cesses of binary Yukawa fluid mixtures in a slitlike pore as
well as the radial distribution functions of bulk binary HCY
fluid mixtures. To test the prediction of the present DFT, the
grand canonical ensemble Monte Carlo �GCMC� simulations
have been carried out to obtain the density profiles of binary
HCY fluid mixtures in a slitlike pore under different tem-
peratures, energy parameter and diameter ratios, and bulk
mole fractions and densities.

In what follows, we present the DFT theory for binary
HCY fluid mixtures in Sec. II, the Monte Carlo method in
Sec. III, the numerical results for the density profiles, the
radial distribution functions, and the surface excesses in Sec.
IV, and a few general conclusions in Sec. V.

II. THEORY

A. Model

We consider an N-component mixture of hard-core
Yukawa fluid. The pairwise-additive two-body potential is
given by

uij�r� = �� r � �ij

−
�ij�ij exp�− ��r − �ij�/�ij�

r
, r � �ij , � �1�

where �ij = ��i+� j� /2, �ij = ��i� j�1/2, �i is the diameter of
species i, �i is the energy parameter, r is the center-to-center
distance between two interacting Yukawa spheres, and � is
the screening length for the Yukawa tail. Throughout this
work, the hard-sphere Yukawa potential with the range pa-
rameter �=1.8 is used. We investigate the structures and sur-
face excesses for binary HCY fluid mixtures confined in a
slit pore under different conditions using the density-

functional theory and Monte Carlo simulations.
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B. Density-functional theory

The essential task for a density-functional theory is to
derive an analytical expression for the grand potential �, or
equivalently, the intrinsic Helmholtz free-energy F, as a
functional of density distribution �i�r�. For an N-component
fluid mixture at given temperature T, total volume V, chemi-
cal potential 	i, and external potential Vi

ext�r� for each com-
ponent, the grand potential is minimized at equilibrium and
the equilibrium density distribution �i�r� satisfies


���i�r��/
�i�r�� = 0 �i = 1,2, . . . ,N� . �2�

The grand potential for an inhomogeneous HCY fluid
mixture is related to the Helmholtz energy functional through
the Legendre transform,

���i�r�� = F��i�r�� + �
i=1

N � dr�i�r��Vi
ext�r� − 	i� . �3�

Once we have an expression for the intrinsic Helmholtz free-
energy functional, the solution to Eq. �2� gives the equilib-
rium density profiles and, subsequently, the relevant thermo-
dynamic properties.

To take into account the nonideality arising from inter-
molecular interactions, the intrinsic Helmholtz free-energy
functional is often expressed as contribution from an ideal-
gas term and an excess term due to intermolecular interac-
tions:

F = Fid + Fex, �4�

where the ideal intrinsic Helmholtz free-energy functional
Fid is known exactly,

Fid = kBT�
i=1

N � dr�ln��i�r��i
3� − 1��i�r� , �5�

where kB is the Boltzmann constant, T is the absolute tem-
perature, and �i=h / �2�mikBT�1/2 is the thermal de Broglie
wavelength.

The central topic of a density-functional theory is to de-
rive an analytical expression for the excess Helmholtz free
energy as a functional of the density distributions. The ex-
cess Helmholtz free-energy functional can be further decom-
posed into the contributions from the hard-sphere repulsion
and long-ranged attraction:

Fex = Fhs
ex + Fatt

ex . �6�

As in the previous work,20,37 we apply the MFMT38 for
the functional Fhs

ex in Eq. �6�. The mathematical expression of
the excess Helmholtz free-energy functional in the MFMT is
given by

Fhs
ex = kBT� 
hs�n��r��dr , �7�

where 
hs�n��r�� is the reduced excess Helmholtz free-
energy density due to the hard-sphere repulsion and n��r�
is the weighted density. The weighted densities can be

expressed as
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n��r� = �
i=1

N

n�,i�r� = �
i=1

N � �i�r��wi
����	r − r�	�dr�, �8�

where the subscripts �=0, 1, 2, 3, V1, and V2 denote the
index of six weight functions wi

����r�. The six weight func-
tions can be found in our previous work20,21 and in the paper
of Boublik39 and Mansoori et al.40 In the MFMT, the excess
Helmholtz free-energy density due to the hard-sphere repul-
sion consists of contributions from the scalar-weighted den-
sities and the vector-weighted densities,41–44


hs�n��r�� = 
hs�S��n��r�� + 
hs�V��n��r�� , �9�

where the superscripts �S� and �V� stand for the contributions
from scalar- and vector-weighted densities, respectively. The
scalar Helmholtz energy density is given by


hs�S��n��r�� = − n0 ln�1 − n3� +
n1n2

1 − n3
+

n2
3 ln�1 − n3�

36�n3
2

+
n2

3

36�n3�1 − n3�2 , �10�

and the vector part is expressed by


hs�V��n��r�� = −
nV1 · nV2

1 − n3
−

n2nV2 · nV2 ln�1 − n3�
12�n3

2

−
n2nV2 · nV2

12�n3�1 − n3�2 . �11�

In the limit of a bulk fluid, the two vector-weighted den-
sities nV1 and nV2 vanish, and the excess Helmholtz energy
density 
hs becomes identical to that from the Boublik-
Mansoori-Carnahan-Starling-Leland �BMCSL� equation of
state.19

To obtain the attractive part of the Helmholtz free-
energy functional, one may perform a quadratic functional
Taylor expansion around the bulk fluid, as what have been
done for the restricted-primitive-model electrolyte
solutions39,40 and pure hard-core Yukawa fluid.39,40 In this
method, the second-order direct correlation function is re-
quired. However, to our knowledge there is no analytical
expression of the second-order direct correlation function for
the binary hard-core Yukawa fluid mixture. Alternatively, the
attractive part of the Helmholtz free-energy functional can be
expressed as

Fatt
ex���r�� =

1

2�
i=1

N

�
j=1

N � � drdr��i�r�� j�r��

�gij�r,r��uij�	r − r�	� , �12�

where gij�r ,r�� is the radial distribution function �RDF� be-
tween spheres i and j for the inhomogeneous fluid. Gener-
ally, it is difficult to be obtained and when we set gij�r ,r��
=1, the most popular method for the dispersion force—the
mean-field �MF� theory—is reproduced.

Fatt
ex���r�� =

1

2�
N

�
N � � drdr��i�r�� j�r��uij�	r − r�	� . �13�
i=1 j=1
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Apart from its simplicity in form and its computational
efficiency, the MF theory often overestimates the contact val-
ues of density and the oscillations of density profiles due to
its complete neglect of the fluid structure. In this work, we
introduce a constant c to correct the attractive part of the
excess Helmholtz free-energy functional, where c is related
to the fluid properties just as a correction of the parameter a
in the famous van der Waals equation of state. From the
comparison of the simulated chemical potentials for pure
hard-core Yukawa fluid with the chemical potential of hard
spheres from BMCSL equation of state,45 we can obtain the
value of parameter c in different conditions. Then the attrac-
tive part of the Helmholtz free-energy functional can be
expressed as

Fatt
ex���r�� =

c

2�
i=1

N

�
j=1

N � � drdr��i�r�� j�r��uij�	r − r�	� .

�14�

At the equilibrium, the grand potential ���i�r�� reaches
its minimum. From Eq. �2�, we can obtain the following
Euler-Lagrange equation for the density profile

�i�r� = �i
b exp
�	i

ex −� dr���
�

�
hs

�n��r�
wi

����	r� − r	��
− �Vi

ext�r� − c��
j=1

N � dr�� j�r��uij�	r − r�	�
 ,

�15�

where Fhs
ex is evaluated from Eq. �7�, �i

b is the bulk density of
component i, and 	i

ex is the excess chemical potential of
component i, i.e.,

	i
ex = 	i,hs

ex + c	i,MF
ex , �16�

where 	i,hs
ex is the excess chemical potential due to the hard-

sphere repulsion, which can be obtained from the BMCSL
equation of state,19 and 	i,MF

ex is obtained by the functional
derivative of Eq. �13� with respect to the density distribution
in the bulk limit. Let us call this density-functional theory as
MFMT-cMF theory; when c=1, it is reduced to the mean-
field �MFMT-MF� theory.

When the HCY fluid mixture is confined in a slit pore or
around a fixed spherical particle, the density profiles only
vary in the z direction or r direction, i.e., �i�r�=�i�z� or
�i�r�=�i�r�. The density profiles are solved from Eq. �15�
using the Picard-type iterative method. The iteration starts
with the corresponding bulk density as an initial guess. The
next input is obtained by mixing the new density profile with
the previous one. The numerical integrations are performed
using the trapezoidal rule with the step size �z or �r
=0.005�, and the iteration is repeated until the percentage
change is smaller than 10−4 at all points.

III. MONTE CARLO SIMULATIONS

In order to test the validity of the DFT, the GCMC simu-
lations are carried out in this work for binary HCY fluid

mixtures at different temperatures, bulk densities, mole frac-
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tions, energy parameters, and diameter ratios. Before the
GCMC simulations, Wisdom’s tets-particle method in an
NVT ensemble is used to determine the excess chemical po-
tential of each component in the binary mixtures under the
considered conditions. The conventional Metropolis algo-
rithm is used for generating successive configurations with
the probability of a successful displacement adjusted to 50%
of all particles. At each calculation, the simulation box con-
tains 1000 particles, in which two kinds of Yukawa mol-
ecules are distributed according to the composition. At each
condition, about 9�105 complete MC cycles are run for
sampling after 1�105 MC cycles are run for equilibration.
In each MC sampling cycle, all particles are displaced once,
and then each of the two kinds of test Yukawa molecules are
inserted into the system five times to obtain excess chemical
potentials of the two components because this may enable
the phase space to be covered more efficiently if an appro-
priate value for the maximum displacement is chosen. Mean-
while, the standard method was used to obtain the radial
distribution functions of the binary HCY mixtures.

The GCMC simulation is then carried out with the ex-
cess chemical potentials obtained above. The mixture fluids

FIG. 1. Density and local concentration �inset� profiles of a binary HCY
mixture in a slitlike pore �pore with H=10�� at the diameter ratio �2 /�1

=0.5, reduced temperature T*=3.0, energy parameter ratio �2 /�1=0.5, bulk
mole fraction x1

b=0.7, reduced bulk density �b�1
3=0.4, and energy param-

eters of wall: �a� �W /kBT=0 and �b� �W /kBT=1.0. The symbols, dashed
curves, and solid curves represent the results from the GCMC simulation,
MFMT-MF, and MFMT-cMF theories, respectively.
are confined between the two parallel walls with pore width

Downloaded 22 Sep 2005 to 128.2.245.73. Redistribution subject to 
H=10�1. The simulation box is cubic �10�1�10�1�10�1�,
and the particles are originally placed as an fcc configuration.
Four different types of move, including displacement, par-
ticle creation, particle deletion, and exchange of the two
kinds of particles are performed with a ratio of 3:1:1:1. The
inserted particles in the system are chosen with a ratio cor-
responding to the mole fraction of the bulk binary mixtures.
The usual periodic boundary conditions and minimum image
conventions are applied in the directions parallel to the walls.
The cutoff distance of Yukawa potential is set to 5�1. Be-
yond this distance, the Yukawa potential is small enough that
the Ewald sum can be neglected. At each condition, about
1�108 complete MC cycles are run for equilibration, and
then another 9�108 MC cycles are run for sampling the
density distributions of the two components. The density
profile is recorded by dividing the region between the walls
into a number of equal-sized bins. It is obtained by averaging
the number of each type of spheres in the bin during the
period of the run for sampling.

IV. RESULTS AND DISCUSSIONS

A. Binary Yukawa fluid mixtures in a slitlike pore

To obtain density profiles from Eq. �15�, we need to
determine constant c at first. The correction parameter c is
just like the correction to parameter a in the famous van der

FIG. 2. Same as in Fig. 1 but at the diameter ratio �2 /�1=0.7, energy
parameter ratio �2 /�1=1.0, bulk mole fraction x1

b=0.35, and reduced density
�b�1

3=0.6.
Waals equation. We determine constant c from the simulated
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chemical potentials of pure Yukawa fluid according to Eq.
�16�. The excess chemical potential is determined using Wi-
dom’s test-particle method for the pure HCY fluid with �
=1.8 under different temperatures and densities. From the
simulated chemical potentials we find that parameter c is
independent of temperature and varies slightly with reduced
density. When the density tends to zero, the constant c should
be a unit. However constant c at low density has little effect
on the density profiles near a wall. Furthermore, if we as-
sume that c is constant at any reduced densities and tempera-
tures, the simple expression of the Helmholtz free-energy
functional can be easily obtained. Otherwise, we need a set
of constants “cij” specific to each of the different interactions
between particles of species i and j. For convenience, we
keep c=1.31 at any reduced densities and temperatures
throughout this work. It should be pointed out that the con-
stant c=1.31 is obtained from the simulated chemical poten-
tial data of pure Yukawa fluid at reduced density �b�1

3=0.6
and various temperatures.

Now we discuss the density profiles of the binary HCY
fluid mixtures in a slitlike pore under various conditions. The
external potential from the parallel walls can be expressed as

Vi
ext�z� = 
Wi�z� + Wi�H − z� , �i/2 � z � H − �i/2

�, otherwise,



�17�

FIG. 3. Same as in Fig. 1 but at the diameter ratio �2 /�1=0.7, energy
parameter ratio �2 /�1=1.0, bulk mole fraction x1

b=0.5, and reduced density
�b�1

3=0.6.
where

Downloaded 22 Sep 2005 to 128.2.245.73. Redistribution subject to 
Wi�z� = − �W exp�− ��z − �i/2�/�i� , �18�

where �W is the energy parameter of the wall and z is the
perpendicular distance from the left wall. H is the width of
the slitlike pore. Throughout this work the width of the pore
is H=10�1. The bulk conditions used in the calculations are
specified by the reduced temperature T*=kBT /�1, hard-core
diameter ratio �2 /�1, energy parameter ratio �2 /�1, bulk
mole fraction xi

b, and reduced bulk density �b�1
3, where �b is

the total number density of the bulk fluid, i.e., �b=�i=1
N �i

b. In
all the calculations in this work, �1 is selected as the unit
length.

In Figs. 1�a� and 1�b�, we compare the calculated density
and local mole fraction �inset� profiles in a slitlike pore with
those of the GCMC simulations for a binary HCY mixture at
T*=3.0, �2 /�1=0.5, �2 /�1=0.5, x1

b=0.7, and �b�1
3=0.4. In

all the cases of the binary HCY mixtures confined in the slit
pore, two wall energy parameters �w /kBT=0 and 1.0 are con-
sidered. Just as in a pure HCY fluid, the density profiles and
the mole fraction profiles occur with less oscillation near a
hard wall at this low bulk density. When the wall has an
attractive force �see Fig. 1�b��, there is an accumulation of
the HCY fluids near the wall, and surface segregation occurs.
It can be seen from Fig. 1 that the MFMT-cMF theory accu-

FIG. 4. Same as in Fig. 1 but at the diameter ratio �2 /�1=0.7, energy
parameter ratio �2 /�1=0.5, bulk mole fraction x1

b=0.65, and reduced density
�b�1

3=0.6.
rately predicts the density and mole fraction profiles. The
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MFMT-MF theory also behaves well at low bulk density,
except for its slight overestimation of the density profile of
the dominant component.

In Figs. 2–4, the density and local mole fraction profiles
predicted from the density-functional theories are compared
with those from the GCMC simulations carried out in this
work at the reduced temperature T*=3.0, diameter ratio
�2 /�1=0.7, reduced bulk density �b�1

3=0.6, and different en-
ergy parameter ratios and bulk mole fractions. For these
cases, the MFMT-cMF theory provides accurate contact val-
ues of density for each component, but the first valleys on
the density profiles predicted by the MFMT-cMF theory are
slightly deeper than that from the GCMC simulations. As
expected, the MFMT-MF theory overestimates the density
profiles for each component in the vicinity of the wall. How-
ever, the MFMT-MF predicts almost the same or slightly
better local mole fraction profiles than the MFMT-cMF
theory does. In general, both theories yield good local mole
fraction profiles.

For higher bulk densities, the oscillations of the density
profiles become more pronounced, as can be seen from Figs.
5–7. For the density profiles, similar results as in Figs. 1–4
can be found, but for the local mole fraction profile, the
MFMT-cMF theory behaves better than the MFMT-MF
theory does. It can be seen from Figs. 1–7 that the higher the
wall energy parameter �w is, the larger is the magnitude of

FIG. 5. Same as in Fig. 1 but at the diameter ratio �2 /�1=0.8, reduced
temperature T*=4.0, energy parameter ratio �2 /�1=2.0, bulk mole fraction
x1

b=0.8, and reduced density �b�1
3=0.65.
density oscillations. There is a significant accumulation of
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both component near the wall at high density and large value
of �w. In all the cases presented in Figs. 1–7, surface segre-
gation is observed and well described by both MFMT-cMF
and MFMT-MF theories.

For the reduced density �b�1
3=0.6 and reduced tempera-

ture T*=1.5, the depletion of binary HCY fluids near a hard
wall is observed in Fig. 8. This is the result of the competi-
tion between excluded-volume and attractive interactions.
At low temperature, the attractive interaction prevails and
the density profiles show depletion. The comparison of the
DFT results with the GCMC simulation data shows that the
MFMT-cMF theory gives excellent density and local mole
fraction profiles in this case. Figure 8 demonstrates that the
MFMT-MF theory is not only quantitatively unreliable but
also qualitatively questionable due to its failure to describe
the depletion near the wall. It can be concluded from
Figs. 1–8 that at the reduced density, the wall energy param-
eter �W and the temperature increase and the oscillations of
the density profiles become more pronounced, but those of
the local mole fraction profiles have no apparent change. At
low temperature, the depletion of binary HCY fluids near a
hard wall can be observed.

B. Radial distribution function of binary HCY fluid
mixtures

Based on the idea of Percus’ test-particle method, the

FIG. 6. Same as in Fig. 1 but at the diameter ratio �2 /�1=0.8, reduced
temperature T*=2.0, energy parameter ratio �2 /�1=0.7, bulk mole fraction
x1

b=0.7, and reduced density �b�1
3=0.7.
DFT can be used to calculate the radial distribution functions
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of the bulk binary HCY fluid mixture. If we fix a Yukawa
sphere, then the external potential produced by the fixed
sphere is given by

Vi
ext�r� = ��, r � �ij

−
�ij�ij exp�− ��r/�ij − 1��

r
, r � �ij . � �19�

If the density profile of other spheres around the fixed par-
ticle is calculated from the DFT, the radial distribution func-
tion gij�r� can be obtained through

gij�r� = �i�r�/� j
b. �20�

Equation �20� has been applied to binary HCY fluid mix-
tures. Figures 9 and 10 depict the predicted radial distribu-
tion functions for the binary HCY fluid mixture at T*=3.0,
�2 /�1=0.7, �2 /�1=0.5, x1

b=0.65, and �b�1
3=0.6 and at

T*=2.5, �2 /�1=0.9, �2 /�1=1.2, x1
b=0.4, and �b�1

3=0.8, re-
spectively, along with the Monte Carlo simulation results of
this work. The results from both MFMT-cMF and
MFMT-MF theories are in excellent agreement with those
from the GCMC simulations. The contact values of the radial
distribution functions from the FMT-cMF theory are very
accurate for the considered binary mixture. Besides, from
Figs. 9 and 10 we find that the radial distribution functions
from the Percus’ test-particle method are somewhat insensi-

FIG. 7. Same as in Fig. 1 but at the diameter ratio �2 /�1=0.9, reduced
temperature T*=2.5, energy parameter ratio �2 /�1=1.2, bulk mole fraction
x1

b=0.4, and reduced density �b�1
3=0.8.
tive to the DFT used.
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It should be pointed out that there is an alternative way
to calculate the radial distribution functions via the second-
order direct correlation functions obtained from the func-
tional derivatives of the excess Helmholtz free-energy func-
tional, i.e.,

�Cij
�2��	r� − r	� = − �


2Fex���i�r���

�i�r�
� j�r��

. �21�

The total correlation functions hij�r�=gij�r�−1 are calculated
from the Ornstein-Zernike equation via the Fourier trans-
form. Apparently, the more computational effort should be
made, and less accurate radial distribution functions are ob-
tained when compared to the Percus’ test-particle method.
Therefore only the latter method is used in this work.

C. Surface excess in slitlike pore

Given the density profiles for each component, the sur-
face excess for component i in a slitlike pore is calculated as

�i
ex = 2�

�i/2

H/2

��i�z� − �i
b�dz . �22�

In Figs. 11 and 12, we compare the calculated surface
excess with those from the GCMC simulations for binary

FIG. 8. Same as in Fig. 1 but at the diameter ratio �2 /�1=0.7, reduced
temperature T*=1.5, energy parameter ratio �2 /�1=0.9, bulk mole fraction
x1

b=0.9, and reduced density �b�1
3=0.6.
HCY fluid mixtures in a slitlike pore at reduced temperature
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T*=3.0, diameter ratio �2 /�1=0.7, energy parameter ratio
�2 /�1=0.5, bulk mole fraction x1

b=0.5, and wall energy pa-
rameters �W /kBT=0 and 1.0.

For the hard wall without an attractive force, the surface
excess of component 1 increases monotonically with the
bulk density, while for the smaller one the surface excess
first decreases with the bulk density �due to the depletion
effect as shown in Fig. 8�, exhibits a minimum, and finally
rises as the density is further increased. The desorption to
adsorption transition of attractive HCY mixture can be ex-
plained by the competition between the excluded volume and
the attraction: the excluded volume favors the accumulation
of fluid near the wall, but the attractions between Yukawa
spheres are restricted close to the wall. Because the hard-
sphere diameter of component 1 is larger, the excluded-
volume effect is dominant and this leads to an accumulation
in the pore. For the smaller molecule at low densities, the
attraction between Yukawa spheres prevails and the density

FIG. 9. Radial distribution functions of a binary HCY mixture at the diam-
eter ratio �2 /�1=0.7, reduced temperature T*=3.0, energy parameter ratio
�2 /�1=0.5, bulk mole fraction x1

b=0.65, and reduced density �b�1
3=0.6. The

symbols, dashed curves, and solid curves represent the results from the
GCMC simulations, MFMT-MF, and MFMT-cMF theories, respectively. To
enhance visual clarity, the RDFs of g12�r� and g11�r� are shifted upward by
0.5 and 1.0, respectively.

FIG. 10. Radial distribution functions of a binary Yukawa fluid mixture at
the diameter ratio �2 /�1=0.9, reduced temperature T*=2.5, energy param-
eter �2 /�1=1.2, bulk mole fraction x1=0.4, and reduced density �b�1

3=0.8.
The symbols, dashed curves, and solid curves represent the results from the
GCMC simulations, MFMT-MF, and MFMT-cMF theories, respectively. To
enhance visual clarity, the RDFs of g12�r� and g11�r� are shifted upward by

1.0 and 2.0, respectively.
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profile shows depletion, leading to desorption. As the density
increases, the density profiles are dominated by the
excluded-volume effect and adsorption is observed. The
MFMT-cMF theory correctly describes the adsorption of the
larger molecule and the transition from desorption to adsorp-
tion for the smaller one, while the MFMT-MF theory sub-
stantially overestimates the surface excess of component 2.
However, in the case of attractive walls, the MFMT-MF
theory seems to give better results than the MFMT-cMF
theory does due to the cancellation of overestimated density
in the vicinity of the wall and the underestimated density
at the first valley of the profiles. Comparing Fig. 11 with
Fig. 12, one can see that the surface excess increases sub-
stantially with the increase of the wall energy parameter �W.

V. CONCLUSIONS

We have applied the grand canonical ensemble Monte
Carlo simulation and the density-functional theory �DFT� to
investigate the structures and adsorptions of the attractive
hard-core Yukawa mixtures in a slitlike pore as well as the

FIG. 11. Adsorption isotherms of a binary HCY mixture confined in a
slitlike pore at the reduced temperature T*=3.0, diameter ratio �2 /�1=0.7,
energy parameter ratio �2 /�1=0.5, bulk mole fraction x1

b=0.5, and energy
parameter of wall �W /kBT=0. The symbols, dashed curves, and solid curves
represent the results from the GCMC simulation, MFMT-MF, and MFMT
-cMF theories, respectively. The bars of symbols represent the statistical
errors of the GCMC simulations.

FIG. 12. Same as in Fig. 11 but for the energy parameter of wall

�W /kBT=1.0.
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radial distribution functions of the bulk hard-core Yukawa
mixtures. The DFT is based on the combination of the modi-
fied fundamental measure theory �MFMT� for the inhomoge-
neous hard-sphere contribution with the mean-field approxi-
mation �MF� of the Yukawa attractions. To cover the
shortage of the overestimation of contact density at a wall, a
correction parameter c is introduced to the MF approxima-
tion �cMF�, just as we make a correction of the energy pa-
rameter in the well-known van der Waals equation of states.
We found that parameter c with a value of 1.31 gives a
satisfactory chemical potential for the pure attractive hard-
core Yukawa fluids with �=1.8 at reduced density �b�3

=0.6. Extensive comparisons of the predictions from DFT
with the GCMC simulation results for the density and local
mole fraction profiles indicate that the results of the
MFMT-cMF theory has a significant improvement for den-
sity profiles and radial distribution functions over that of
MFMT-MF theory, but little improvement is found for local
mole fraction profiles. For the attractive hard-core Yukawa
mixtures, there is a depletion near a hard wall at low tem-
perature.

Both results of the GCMC simulations and the present
MFMT-cMF theory have confirmed that the excluded-
volume effect and the attraction between molecules have a
significant effect on the adsorption/desorption of Yukawa flu-
ids near a hard wall. The MFMT-cMF theory gives a better
surface excess than the MFMT-MF theory does in a hard
slitlike pore. For the binary Yukawa mixtures confined in the
attractive slitlike pore, the MFMT-cMF theory gives an ac-
curate surface excess of the larger molecule while it under-
estimates the surface excess of the smaller one.

We only make a simple correction of the MF theory
regarding the correction parameter c as a constant, and the
improvement of density profiles and adsorption isotherms for
the binary hard-core Yukawa mixtures near a hard wall is
obvious, while for the attractive wall, a further modification
of the MF theory is required. The present MFMF-MF theory
and its corrected form—MFMT-cMF theory—are simple in
form, computationally efficient, and can be directly extended
to the multicomponent and polydisperse hard-core Yukawa
systems. Therefore, the method used in this work is very
promising for practical applications such as multicomponent
and polydisperse colloidal suspensions in confining geom-
etry, inhomogeneous polydisperse dense plasmas, etc.

ACKNOWLEDGMENTS

This work is sponsored by the National Natural Science
Foundation of China under Grant No. 20376037 and the
National Basic Research Program of China under Grant
No. 2003CB615700.
Downloaded 22 Sep 2005 to 128.2.245.73. Redistribution subject to 
1 S. M. Yang, H. Miguez, and G. A. Ozin, Adv. Funct. Mater. 12, 425
�2002�.

2 D. Fu, Z.-C. Li, Y.-G. Li, and J.-F. Lu, Acta Chim. Sin. 61, 1561 �2003�.
3 P. Gonzalez-Mozuelos, J. Alejandre, and M. Medina-Noyola, J. Chem.
Phys. 95, 8337 �1991�.

4 D. Fu and Y. Zhao, Acta Chim. Sin. 63, 11 �2005�.
5 L. M. Sese and L. E. Bailey, J. Chem. Phys. 119, 10256 �2003�.
6 T. W. Cochran and Y. C. Chiew, J. Chem. Phys. 121, 1480 �2004�.
7 D. Fu, Y. Zhao, and Y.-G. Li, Ind. Eng. Chem. Res. 43, 5425 �2004�.
8 K. P. Shukla, J. Chem. Phys. 112, 10358 �2000�.
9 M. Gonzalez-Melchor, A. Trokhymchuk, and J. Alejandre, J. Chem.
Phys. 115, 3862 �2001�.

10 D.-M. Duh and L. Mier-Y-Teran, Mol. Phys. 90, 373 �1997�.
11 D. Henderson, L. Blum, and J. P. Nowortya, J. Chem. Phys. 102, 4973

�1995�.
12 D. Fu, Chin. J. Chem. Eng. 12, 463 �2004�.
13 J. N. Herrera, L. Blum, and E. Garcia-Llanos, J. Chem. Phys. 105, 9288

�1996�.
14 O. Vazquez, J. N. Herrera, and L. Blum, Physica A 325, 319 �2003�.
15 W. Olivares-Rivas, L. Degreve, D. Henderson, and J. Quintana, J. Chem.

Phys. 106, 8160 �1997�.
16 J.-H. Yi and S.-C. Kim, J. Chem. Phys. 107, 8147 �1997�.
17 Y. P. Tang and J. Z. Wu, Phys. Rev. E 70, 011201 �2004�.
18 Y. P. Tang, J. Chem. Phys. 121, 10605 �2004�.
19 F.-Q. You, Y.-X. Yu, and G.-H. Gao, J. Phys. Chem. B 109, 3512 �2005�.
20 Y.-X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 �2002�.
21 Y.-X. Yu, J. Z. Wu, Y.-X. Xin, and G.-H. Gao, J. Chem. Phys. 121, 1535

�2004�.
22 R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Matter 14,

12063 �2002�.
23 Y. Rosenfeld, J. Chem. Phys. 98, 8126 �1993�.
24 D. Henderson, G. Stell, and E. Waisman, J. Chem. Phys. 62, 4247

�1975�.
25 G. Stell and S. F. Sun, J. Chem. Phys. 63, 5333 �1975�.
26 Y. P. Tang, J. Chem. Phys. 118, 4140 �2003�.
27 R. Evans, in Fundamentals of Inhomogeneous Fluids, edited by D. Hend-

erson �Marcel Dekker, New York, 1992�.
28 O. Pizio, A. Patrykiejew, and S. Sokolowski, J. Chem. Phys. 121, 11957

�2004�.
29 C. Gu, G.-H. Gao, and Y.-X. Yu, J. Chem. Phys. 119, 488 �2003�.
30 X. R. Zhang, D. P. Cao, and W. C. Wang, J. Chem. Phys. 119, 12586

�2003�.
31 G. Wilemski and J. S. Li, J. Chem. Phys. 121, 7821 �2004�.
32 B. Q. Lu, R. Evans, and M. M. Telo da Gama, Mol. Phys. 55, 1319

�1985�.
33 E. Velasco and P. Tarazona, J. Chem. Phys. 91, 7916 �1989�.
34 K. Katsov and J. D. Weeks, J. Phys. Chem. B 105, 6738 �2001�.
35 K. Katsov and J. D. Weeks, J. Phys. Chem. B 106, 8429 �2002�.
36 D. M. Huang and D. Chandler, J. Phys. Chem. B 106, 2047 �2002�.
37 Y.-X. Yu and J. Z. Wu, J. Chem. Phys. 119, 2288 �2003�.
38 Y. Rosenfeld, Phys. Rev. Lett. 63, 980 �1989�.
39 T. Boublik, J. Chem. Phys. 53, 471 �1970�.
40 G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. J. Leland, J.

Chem. Phys. 54, 1523 �1971�.
41 Y.-X. Yu, J. Z. Wu, and G.-H. Gao, J. Chem. Phys. 120, 7223 �2004�.
42 C. N. Patra and S. K. Ghosh, J. Chem. Phys. 117, 8938 �2002�.
43 D. Boda, W. R. Fawcett, D. Henderson, and S. Sokolowski, J. Chem.

Phys. 116, 7170 �2002�.
44 Y.-X. Yu, J. Z. Wu, and G.-H. Gao, Chin. J. Chem. Eng. 12, 688 �2004�.
45 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids

�Clarendon, Oxford, 1989�.
AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


